Online Prediction with Privacy
نویسندگان
چکیده
In this paper, we consider online prediction from expert advice in a situation where each expert observes its own loss at each time while the loss cannot be disclosed to others for reasons of privacy or confidentiality preservation. Our secure exponential weighting scheme enables exploitation of such private loss values by making use of cryptographic tools. We proved that the regret bound of the secure exponential weighting is the same or almost the same with the well-known exponential weighting scheme in the full information model. In addition, we prove theoretically that the secure exponential weighting is privacy-preserving in the sense of secure function evaluation.
منابع مشابه
A centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملAnalysis and Evaluation of Privacy Protection Behavior and Information Disclosure Concerns in Online Social Networks
Online Social Networks (OSN) becomes the largest infrastructure for social interactions like: making relationship, sharing personal experiences and service delivery. Nowadays social networks have been widely welcomed by people. Most of the researches about managing privacy protection within social networks sites (SNS), observes users as owner of their information. However, individuals cannot co...
متن کاملImage Privacy Prediction Using Deep Features
Online image sharing in social media sites such as Facebook, Flickr, and Instagram can lead to unwanted disclosure and privacy violations, when privacy settings are used inappropriately. With the exponential increase in the number of images that are shared online, the development of effective and efficient prediction methods for image privacy settings are highly needed. In this study, we explor...
متن کاملPrivacy-Preserving Link Prediction in Decentralized Online Social Networks
We consider the privacy-preserving link prediction problem in decentralized online social network (OSNs). We formulate the problem as a sparse logistic regression problem and solve it with a novel decentralized two-tier method using alternating direction method of multipliers (ADMM). This method enables end users to collaborate with their online service providers without jeopardizing their data...
متن کاملPrediction, Evolution and Privacy in Social and Affiliation Networks
Title of dissertation: PREDICTION, EVOLUTION AND PRIVACY IN SOCIAL AND AFFILIATION NETWORKS Elena Zheleva, Doctor of Philosophy, 2011 Dissertation directed by: Professor Lise Getoor Department of Computer Science In the last few years, there has been a growing interest in studying online social and affiliation networks, leading to a new category of inference problems that consider the actor cha...
متن کامل